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ABSTRACT. We study a technique, called partial fraction decom-
position, to find integration of rational functions.
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1. RATIONAL FUNCTIONS

Definition 1.1. A rational function is the quotient of two polynomial
functions.

For example,

.
@) = @+
(:1:) B 2 + 2
9 - x2—4r + 8’
51 23_ 1
B = x4+ 22° — x4+ |
3 + dx

are rational functions.

The rational function is said to be proper if the degree of its nu-
merator is less than that of its denominator. Certainly. other rational
functions are improper. In the examples above, f and g are proper
while A is improper.

An improper rational function can be written as the sum of a poly-
nomial and a proper rational function by using long division.

Example.

°+223 —z+1 9
=x° — 3 :
3 + 5 3 + bx

It follows that the problem of integrating rational functions becomes

the problem of integrating polynomial functions and proper rational
1

h(z) =
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functions. Since finding integration of polynomial is not hard, it is
sufficient to study integration of proper rational functions.

2. PARTIAL FRACTION DECOMPOSITION (LINEAR FACT{JRS)

Look at the calculation
1 | r+14+x-1 - 2r

:r:—1+:r+1=(:r:—l}(:r:+1) 2 -1 2/6

The inverse process is called partial fraction decomposition; that .
we write

g — 1
as a sum of two simpler fractions.
Example. (Distinct linear factors) Decompose

3r —1

T2 —1—6

Solution.

We first note that the denominator can be rewritten as (z+2)(x — 3)
(since its roots are —2 and 3). Secondly, we do the partial fraction
decomposition as follows:

Assume that

3z —1 A B  A(z-3)+ B(z+2)
22—-z-6 z+2 -3 (x +2)(x—-3)

Thus
Jz—-1=A(z-3) + B(z + 2)
for all . Let x = 3 to get

- B
S=0%8.= 3
and let z = —2 to get
R
5
So,
3z — 1 7 8

2-2-6 b5z+2) bz-3)

Example. Find
3’, A
/ z—1 I
2 — 12— 6

)
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Solution.

/’ 3z —1 e _/ 7 i 8 g,
2 —x -6 B 5(x+2) 5(x—-3)]

7 8
— d,j. J.'.
_/ 5(z + 2) Rk _/ 5(xz — 3) -

rd 8
Ehl [:1:+2|+Elu|;r:—3|+(7.

br + 3 I
3 — 272 — 3;1:f !

Solution. We first need to factor the denominator into a product
of some linear factors (or polynomials of degree 1)

2’ —20° -3z = z(z? -2z - 3)
= z(z*+z -3z -3)
= z[(z* + z) — (3z + 3)]
= zlz(zr+1) - 3(z + 1)]
= z(x+1)(x - 3).

Example. Find

Thus, we can write

5T + 3 5z + 3 A B C 3/6
b

I3—2I2—3I=I(:E+1){I—3)= +:r+l+:r—3

for some constants A, B and ' which we need to determine. This
equation gives

(2.1) b5z+4+3=A(z+1)(z—-3)+Bzx(r—3)+Cz(z+1) Vz.
Letting x in (2.1) be equal to 0, we find
A0+1)(0-3) = 5-0+3

A = -1
Similarly, letting x = —1 and z = 3 gives
-1 3
B=—,C=-.
- 2
Thus,
or + 3 | 1 3

3 -222-3z z 2z+1) & 2(x — 3)

and therefore,

St + 3 1 9
/j:ﬂ T T gﬂ:(jj: = —111|1'| = §|.L + 1| -+ §|;};- - 3| i)

<)
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Example. (Repeated linear factors) Find

T
f - 3)21’1.1:

Solution. The decomposition takes the form
T A B
- = ;5 =.
(x-32 -3 (z-3)2

It follows that
r=A(x - 3)+ B.

Letting 2 = 3 gives
3=A-0+4B, B=3.

Also, we can compare the coefficient of x to get A = 1. Thus,

f T e f | " 3 .
(x-3)2 r—-3 (z-3)2|

Injz-3|-3(x-3)"'+C.

O
Example. (some distinct, some repeated linear factors) Find

/ 3z — 8z + 13
~dr
J (x+3)(xz—-1)*
Solution. Decompose the fraction in the following way
3z? — 8z + 13 A B 9

(x + 3)(z — 1)? T r+3 T 1 t (x — 1)
It can be rewritten as
3z° — 8z + 13 Alz-1*+ B(z - 1)(z + 3) + z(z + 3)
(z + 3)(z — 1)2 - (z +3)(z - 1)?
32° -8z +13 = A(z—-1)+B(z-1)(z+3)+C(z + 4/6
Substitution z = 1,z = -3 and £ = 0 yields C' = 2, A = 4 and
Bw=-=1
Thus,
3z% — 8z + 13 1 1 2

(z +3)(x = 1)° t+3 -1 o (x - 1)?’

P T Y
/ (il_l_ i}?j i_ ii! dr = 4lnflz+3|-Injlz-1|-2(x - )+ C

L]

)



INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS 5

General rule for decomposing fractions with repeated lin-
ear factors in the denominator: for each factor (ax + b)* of the
denominator, there are £ terms in the partial fraction decomposition:

A'l i ,4‘2 3 A;-‘; vk A;;
(ax+b)  (ax+b)? (ax+b)? (az + b)*’

3. PARTIAL FRACTION DECOMPOSITION (QUADRATIC F.ﬂu{fl"{'_‘.'l{bi)

In factoring denominator of a fraction, we may get some quadratic
factors, for example z* + 1, that cannot be factored into linear factors.
Example. (a single quadratic factor) Decompose

6x? — 3z + 1
(4z +1)(z? + 1)

and then find its integral.
Solution. We decompose the fraction as

6z°-3z+1 = A +BI+C
(de + 1)(22+1) 4z +1 2 + 1

Multiplying both sides by (42 + 1)(2? + 1) yields
6z° =3z + 1= A(z* +1) + (Bz + C)(z* + 1).

When z = — l]

e
" i
I
b | —
Sy
[ 2]
I
P
I
o
——®
s
I
oba
- 1
T
I
I
TR
It
_I_
[—
. ———

6 " 3 SE 17A
16 4 16
A = 2
When £ = (0 and z = -1, we get

1=24+C = C=-1
4=4+(B-15 = B=1.

Thus
62 =3z +1 2 +;1:—1
(4z +1)(z2+1) 4dr+1 z22+1

o/6

)



6 INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS

and

622 — 3z +1 2 r—1
da adx + dx
(4 + 1)(z%2 + 1) 4z + 1 z? +1

| T
—In |4z + 1] —I—/ ld:r — /15.':2 + ldx

x? +
1 [ du

= =In|dx+ 1|+ = | — — arctanz
2 u

|
In |4z + 1| + §Jn[u\ — arctanz + C

Il
—ral= o= e

| .
5 In |4z + 1| + §ln(:r:2 + 1) — arctanz + C.

Here, we have used the substitution v = 2* 4 1 to find [ —*=dx.

4. SUMMARY

To decompose a rational function

~ plx)
J(@) q(x)

into partial fractions, proceed as follows
Step 1: If f is improper, divide p(z) by ¢(x) to obtain
N(z)
D(z)
Step 2 Factor D(x) into a product of linear and irreducible quadratic
factors.

Step 3 For each factor of the form (azx + b)*, expect the decompo-
sition as

f(z) = a polynomial A

Ay A . Aj N Ag
(az +b)  (ax+b)2  (azx + b)3 " (az + bk’

Step 4 For each factor of the form ax? + bx + ¢, expect the decom-
position as

Bx +C
ar? + bx + ¢
Step 5 Set %&}1 equal to the sum of all partial fractions in steps 3

and 4. The number of constants should be equal to the degree of the
denominator D(x).

Step 6 Multiply both sides by D(x) and assign convenient values to
the variable x to find all constants.

6/6
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